Simulink® Design Verifier™
Getting Started

<

MATLAB&SIMULINK

R2023a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Verifier™ Getting Started Guide
© COPYRIGHT 2019-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

September 2019 Online only New for Version 4.2 (Release 2019b)

March 2020 Online only Revised for Version 4.3 (Release 2020a)
September 2020 Online only Revised for Version 4.4 (Release 2020b)
March 2021 Online only Revised for Version 4.5 (Release 2021a)
September 2021 Online only Revised for Version 4.6 (Release 2021b)
March 2022 Online only Revised for Version 4.7 (Release 2022a)
September 2022 Online only Revised for Version 4.8 (Release 2022b)

March 2023 Online only Revised for Version 4.9 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Simulink Design Verifier Product Description

1]

Simulink Design Verifier Product Description 1-2

Getting Started with Simulink Design Verifier

2|

About Systematic Model Verification Using Simulink Design Verifier . . . 2-2
When to Use Simulink Design Verifier 2-2
Using Simulink Design Verifier in a Model-Based Design Workflow 2-2
Creating Analysis Result Reports 2-3

Detect Design Errors in Controller Model 2-5

Generate Test Cases for a Simplified Cruise Control Model 2-10
Analyze a Simple Cruise Control Model 2-10

Generate Test Cases for Coverage Analysis 2-11

iii

Simulink Design Verifier Product
Description

1

Simulink Design Verifier Product Description

Simulink Design Verifier Product Description

1-2

Identify design errors, prove requirements compliance, and generate tests

Simulink® Design Verifier™ uses formal methods to identify hidden design errors in models. It detects
blocks in the model that result in integer overflow, dead logic, array access violations, and division by
zero. It can formally verify that the design meets functional requirements. For each design error or
requirements violation, it generates a simulation test case for debugging.

Simulink Design Verifier generates test cases for model coverage and custom objectives to extend
existing requirements-based test cases. These test cases drive your model to satisfy condition,
decision, modified condition/decision (MCDC), and custom coverage objectives. In addition to
coverage objectives, you can specify custom test objectives to automatically generate requirements-
based test cases.

Support for industry standards is available through IEC Certification Kit (for IEC 61508 and ISO
26262) and DO Qualification Kit (for DO-178).

https://www.mathworks.com/discovery/formal-verification.html
https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/products/do-178.html

Getting Started with Simulink Design
Verifier

* “About Systematic Model Verification Using Simulink Design Verifier” on page 2-2
* “Detect Design Errors in Controller Model” on page 2-5
* “Generate Test Cases for a Simplified Cruise Control Model” on page 2-10

2 Getting Started with Simulink Design Verifier

About Systematic Model Verification Using Simulink Design
Verifier

2-2

Simulink Design Verifier helps you perform systematic model verification to identify hidden design
errors, prove properties, and generate test cases for functional testing. Simulink Design Verifier uses
formal methods to test design correctness that increases confidence in your design model that the
production code generation uses.

You can perform systematic model verification for scenarios such as:

* Applications that are developed by using model-based design, where you perform design
verification to demonstrate that the model satisfies the functional requirements and does not
contain unintended functionality.

* Analyzing a subset of a design model that is intended for control software. For open-loop control
analysis, formal verification is widely used for rigorous testing of design models.

» TIteratively verifying your model against requirements, checking for design errors, and performing
functional testing early in the design cycle and throughout the design process.

* Systematic verification and unit-level testing of small components in isolation or for system-level
testing of an integrated design model.

When to Use Simulink Design Verifier

Consider a control engineer who is involved in designing a control system. During the design cycle,
the control engineer creates a design model from system requirements. Throughout the development
process, the engineer:

* Identifies and eliminates hidden design errors
» Tests model against requirements
* Performs model and code coverage analysis to confirm test completeness

* Resolves missing coverage by using test generation and dead logic detection
» Performs baseline and equivalence testing

Simulink Design Verifier supports these model and code verification processes. It integrates with
Requirements Toolbox™, Simulink Coverage™, Simulink Check™, and Simulink Test™ to achieve
model and code verification.

Using Simulink Design Verifier in a Model-Based Design Workflow

Model verification includes checking against standards, checking for design errors, proving
properties, and generating test cases for coverage analysis.

With Simulink Design Verifier, you can:

* Identify hidden design errors, such as integer overflows or division by zero, and generate
counterexamples to debug unintended functionalities. You can also justify or exclude model
objects from analysis.

+ Verify model against requirements by using Requirements Toolbox.

* Achieve model coverage (Simulink Coverage) by generating test cases that satisfies model
coverage objectives.

https://www.mathworks.com/discovery/formal-verification.html
https://www.mathworks.com/solutions/model-based-design.html

About Systematic Model Verification Using Simulink Design Verifier

Perform code coverage (Embedded Coder) analysis by generating test cases for code generated by
Embedded Coder®.

Extend existing test cases and achieve missing coverage.
Integrate test cases with Simulink Test to perform baseline and equivalence testing.

Support industry standards through the IEC Certification Kit (for IEC 61508 and ISO 26262) and
DO Qualification Kit (for DO-178).

This workflow diagram demonstrates the capabilities of Simulink Design Verifier at various stages of
the verification and validation workflow.

* Simulink Reguirements, Simulink
Test, Simulink Coverage

Code Verification:

- Generate test cases for
Embedded Coder generated code

- Code coverage analysis

Walidation

* Simulink Test, Simulink Coverage

Object code verification

Model verification Source code verification

=

[

User System
Reguirements Reguirements

Source Code Object Code

Model Verification:

Checks,
- Design eror detection "/"'CQNP"SHDE.
/ Coverage
- Test case generation

- Model coverage ansalysis

- Property proving

* Simulink Check, Simulink Coverage

Checks,
Compliance,
Coverage

* Cross product tools used with Simulink Design Verifier

For a quick introduction to design error detection and test generation, see “Detect Design Errors in
Controller Model” on page 2-5 and “Generate Test Cases for a Simplified Cruise Control Model” on
page 2-10.

To learn more about Simulink Design Verifier analysis, see “Detect and Address Bugs”, “Generate
Tests”, “Prove Properties in a Model”, and “Review Analysis Results”.

Creating Analysis Result Reports

You can also generate reports and review the analysis results. There are several ways to review the
analysis results:

Review the analysis results at a glance by highlighting the results on the model.

Create a test harness model to simulate the test cases or debug counterexamples.

Generate a model coverage report.

View generated tests in the Simulation Data Inspector.

Generate an HTML or PDF report that contains detailed information about the analysis results.

2-3

https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/products/do-178.html

2 Getting Started with Simulink Design Verifier

See Also

More About

. “Overview of the Simulink Design Verifier Workflow”

2-4

Detect Design Errors in Controller Model

Detect Design Errors in Controller Model

To detect hidden design errors in your model early in the verification process, use design error
detection analysis. This tutorial shows how to perform design error detection analysis, review the
analysis results, and then fix the identified design errors.

Consider a controller that has three sensor inputs: SensorA, SensorB, and SensorC. The controller
algorithm operates according to the equation:

(SensorA — SensorB)
(Sensord + SensorB)

= 0.1, then output = SensorC

(Sensord + SensorB)
2

else output =

The algorithm is modeled as:

Simulink Design Verifier
Detect Integer Overflow Errors

Gain
D, >/
SensarA
Saturation
e e >
Abs < = ()
" Out
- >/ o1 LI
SansarB
Saturation Sum Constant Relational
Oparalor
Drivide
(a3} =_/_ '*_ﬂ
Sensor’
Saturation2

Switch
Copynght 2019 The MathWaorks, Inc.

Follow these steps to perform design error detection analysis:

Prepare Model for Design Error Detection

1. Open the model sldvexControllerIntegerOverflow:

2-5

2 Getting Started with Simulink Design Verifier

sldvexControllerIntegerOverflow
2. On the Design Verifier tab, in the Mode section, select Design Error Detection.

3. Click Error Detection Settings. In the Configuration Parameters dialog box, on the Design
Verifier > Design Error Detection pane, select the checks that you want to perform.

Solver Design Error Detection
Data Import/Export

Math and Data Types

> Diagnostics] Dead logic (partial)
Hardware Implementation
Model Referencing

Modeling Errors

Run exhaustive analysis

Simulation Target Coverage objectives to be analyzed: Condition Decision | «
> Code Generation [] Out of bound array access

Coverage
» HDL Code Generation || Data store access violations

¥ Design Verifier
Block Replacements
Parameters and Variants [¢] Division by zero
Test Generation
Design Error Detection

Numerical Errors

[¢] Integer overflow

Property Proving || Non-finite and NaN floating-point values
Results [| Subnormal floating-point values
Report

Signal Range Errors

[] Specified minimum and maximum value violations

[| Specified block input range violations

High-Integrity Systems Maodeling Checks
[| Usage of remainder and reciprocal operations - his|_0002
[] Usage of square root operations - his|_0003

[] Usage of log and log10 operations - his|_0004

Perform Design Error Detection Analysis

To perform design error detection analysis, on the Design Verifier tab, click Detect Design Errors.
The software analyzes the model for design errors and displays the results in the Results window. The
results indicate that three out of six objectives were falsified.

Detect Design Errors in Controller Model

Progress |
Objectives processed 6/6

Valid 3

Falsified 3

Elapsed time 0:35

Design error detection completed normally.

3/6 objectives valid
3/6 objectives falsified - need simulaticn

Results:

* Dpen filter viewer

* Highlight analysis results on model

* View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (FDF)
* Create harness model

* Export test cases to Simulink Test

Data saved in: sldvexControllerintegerCOverflow _sldvdata.mat
in folder: H:\Documents\MATLAB\s|dv_output
\sldvexControllerIntegerOverflow

Review the Analysis Results

You can review the analysis results by highlighting the results on the model and reviewing the

analysis report.

Highlight Analysis Results on the Model

On the Design Verifier tab, in the Review Results section, click Highlight in Model.

1. Select the Sum block. The Results window displays the integer overflow objectives of the Sum block.

2-7

2 Getting Started with Simulink Design Verifier

sldvexCantrallerintegerOverflow

Simulink Design Werifier

Detect integer Owerflow Errors

P4 Results: sldverCantrallor mtegervarflaw |
Back to summa
S oo
Saeis Sabrassn sldvexControllerIntegerOverflow fSum
.rL Integer overflow Objectives
E——E u Qverflow ERROR - View counterexample Debug Justify
Salussbon! .

FT Derived Ranges:
r
Pt _:_@d _l Dutport 1:[0..255]

2. To debug the integer overflow error, click View counterexample. The harness model and the
Signal Builder block open.

Active Group: Test Case 2 Y | O | - || -
129
SensorA
1280 ¢
127 | | | | | |
1731
SensorB
172
1?1 | | | | | |
1 —
SensorC
0
_1 | | | | | | | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (sec)

Index: 1

) & SensorB
Name: SensorA & SensorC

Detect Design Errors in Controller Model

When the input value of SensorA is 128 and SensorB is 172, the Sum block output overflows. The
accumulator data type of the Sum block is set to an incorrect integer value of uint8, it results in
overflow errors and division by zero errors on the downstream Divide block.

Review Analysis Report

To view the HTML report, in Review Results, click HTML Report. The Design Error Detection
Objectives section lists the objectives of each model items and their description.

3.1. Objectives Valid

i Lype Nudel Liem Desceription Analysis Time (sec)
0 lnteger overflow i Overflow 16
9 Tntcaer overflow [Divide Overflow 41
14 Tnieger over(low Crain Civerflow 16

3.2. Objectives Falsified with Counterexamples

1y pe

Model Item

Description

| Analysis Time

(sec) Lest Case

Lioteger overtflow

Sum

Overtlow

1y

Division by zero

Divide

[Division by zero

41

— oo | *

Trteper overflow

Ovartlow

Tows [I— [l

43

Fix Design Errors

In the example, the design error detection analysis found integer overflow and division by zero errors
in the model. The errors were caused due to a mismatch in the integer data type.

To fix the errors, change the Accumulator data type and Output data type to uint16 to handle the
range of possible signal values. Select the Sum block, and set Accumulator data type and Output
data type to uint16. When you rerun the design error detection analysis, the Results Summary
window reports that 6/6 objectives are valid. When you simulate the test case for the Sum block,
observe that the test case resolves the error.

See Also

* “Design Verifier Pane: Design Error Detection”
* “Objectives Status Chapters”

* “What Is Design Error Detection?”

* “Workflow for Detecting Design Errors”

2-9

2 Getting Started with Simulink Design Verifier

Generate Test Cases for a Simplified Cruise Control Model

With Simulink Design Verifier, you can generate test cases for model coverage and custom objectives.
You can also measure coverage of existing requirements-based test cases and extend these test cases
to increase coverage or achieve full coverage.

This tutorial explains a simplified cruise control model that controls the throttle speed. You generate

test cases that satisfy condition and decision model coverage objectives and then, simulate these test
cases to generate the model coverage report.

Analyze a Simple Cruise Control Model

Consider a simplified cruise control model that adjusts the throttle to maintain a steady speed as set
by the set speed.

Cruise Mode Speed Selection Cruise P| Controller

yYYy

Logical Gain z-1 "

r [El
Goto T Sum
|-
v AMD | \ i+ b_’
’-’ - ' = K Ts
—=oF - 1)

Crperatar Switch 1L throttle
[E] Discreta-Time
Integrator

current speed

2-10

This cruise control model meets these requirements:

* The control system is activated when the engage and the enable signals are true. This condition
is defined by the AND block.

* When the system is activated, the Switch block passes set speed to the PI controller. The PI
controller calculates the throttle by integrating the error term defined by the difference set
speed - current speed.

* Throttle continues to increase or decrease until set speed is higher or lower than current
speed.

* When the system is not activated, the Discrete-Time Integrator block resets. The error term is
zero, which means the throttle is in reset position.

When you perform test generation analysis, Simulink Design Verifier generates test cases for the
model coverage objectives associated with each model item in the model. The table lists the condition
and decision coverage objectives for the associated Model blocks. For more information on model
coverage objectives, see “Model Coverage Objectives for Test Generation” and “Model Objects That
Receive Coverage” (Simulink Coverage).

Generate Test Cases for a Simplified Cruise Control Model

Block Model Coverage Objective Generated Test Case
Description

AND Condition Each input value is set to true or
false independently.

NOT Condition Input is set to true or false
independently.

Switch Decision Test case demonstrates that the

Switch passes both the input
signals to output.

Discrete-Time Integrator Decision * Test case demonstrates the
saturation behavior of the
integrator.

o Satisfies external reset
conditions.

Generate Test Cases for Coverage Analysis

The analysis results give detailed descriptions of the coverage objectives for each model item and
generated test cases for all satisfied objectives. You simulate the generated test cases to measure
model coverage.

Generate Test Cases

1. Open the model sldvexSimpleCruiseControl:

sldvexSimpleCruiseControl
2. On the Design Verifier tab, in the Mode section, select Test Generation.
3. To generate test cases, click Generate Tests.

The Results Summary window displays the results. The result indicates that all 14 objectives are
satisfied.

2-11

2 Getting Started with Simulink Design Verifier

2-12

Progress -
Objectives processed 14/14

Satisfied 14

Unsatisfiable 1]

Elapsed time 0:12

Test generation completed normally.
14/14 objectives satisfied.

Results:

* Dpen filter viewer

* Highlight analysis results on model

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (FDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: sldvexSimpleCruiseControl_sldvdata.mat
in folder: H:\Documents\MATLAB\sldv_output
\sldvexSimpleCruiseContraol

Review the Analysis Results

1. On the Design Verifier tab, in the Review Results gallery, click Highlight in Model. The model
objectives that the software found to be satisfied are highlighted in green.

Click the Switch block. The Results window displays the summary of the satisfied decision
objectives.

Generate Test Cases for a Simplified Cruise Control Model

[%a] sldvexsimpleCruiseControl hd
bi-‘.::_ s slehvexSimplaCruiseCantro r 5
Simulink Design Verifiar - [
Generate Test Cases for Model Coverage Analysis
Back to surnmary
Cneco MOOD Speoed Sedeonon Cruiza Pl Contralker
'(E)f sldvexSimpleCruiseControl/Switch
— r‘{;l K Deci-sion (-thec.tiue) .
g L . I [Lo logical trigger input false Satisfied -Viewtest case Inspect
e I | — an n > fre—r) (output is from 3rd input
wndin D_pi:‘.‘;f rwle .' m Dﬂl“t)
=n" Fram ' logical trigger input true Satisfied -Viewtestcase Inspect
cummn | el (output is from 1st input
port)
Capyrighl 2018 Tha MatHiWoria, he.

The summary shows that all the objectives of the Switch block are satisfied.

2. To view the HTML report, in the Review Results gallery, click HTML Report.

The test objective status section includes detailed descriptions of satisfied objectives for each model
item and generated test case.

Tvpe Model Item Description ‘(2::}13-515 Time Test Case
1 Condition Logical Operator Logic: input port 1 true 10 1
2 Condition Logical Operator Logic: mput port 1 false 10 1
3 Condition Logical Operator Logic: input port 2 true 10 1
4 Condition Logical Operator Logic: input port 2 false 10 1
5 Condition NOT Logic: mput port 1 true 10 1
] Condition NOT Logic: input port 1 false 10 1
7 Decision Discrete-Tune Intesrator Reset true 10 1
8 Decision Discrete-Tune Intesrator Reset false 10 1
9 Decision Discrete-Time Integrator integration result == lower lunit true 10 2
10 Decision Discrete-Tune Integrator mtegration result <= lower limit false 10 1
11 Decizion Discrete-Time Integrator integration result == upper limit true 11 3
12 Decision Discrete-Tune Integrator wmtegration result == upper lunit false 10 1
13 Decision Switch :ﬁill:?lpr;;gtiget input false (output is from 3rd 10 1
14 Decision Switch :ﬁiﬁ?;:;%gﬂ input true (output is from 1st 10 1

Simulate Test Cases for Model Coverage Analysis

To view the test case for a model coverage objective, in the Results window, click View test case. The
harness model and the Signal Builder block opens. To simulate the test case, in the Signal Builder

block, click the

button.

The software simulates the test case and highlights the harness model. To view the coverage of the

model items, point the cursor to each model object in the harness model.

2-13

2 Getting Started with Simulink Design Verifier

sldvexSimpleCruiseControI_harness1 F

Test Case Explanation

theote

1
throttle

Size-Type
Test Casa 1 - T
engage 11 engags
[o] snabls CEE enabls
set spead G EE satspead 1 :
current speed d 4 ﬁ"rants.peed
Inputs Test_Unit (copied from sldvexSimyg
M
DoC
Text

Decision 88%
(7/8)

Execution 100%
(6/6)

Condition 100%
(6/6)

Active Group: lTest Case 1 -~ = - P -
— ~ S o & o
4 - - - v
engage
0.5 —
B L L 1 1 |
1
enable
0.5
(9} 1 1 1 1 1
2 set speed
T
= L L 1 1 |
T
current speed
05—
o= T T T T 1
Q 0.s 1.8 2 2.5 3
Time (sec)
. =@ enable
Name: endgade @ et spead
Index: 1 s 12 currcnt specd
~

2-14

See Also
“Design Verifier Pane: Test Generation” | “Objectives Status Chapters”

More About

“Workflow for Test Case Generation”

“Generate Test Cases for a Subsystem”

	Simulink Design Verifier Product Description
	Simulink Design Verifier Product Description

	Getting Started with Simulink Design Verifier
	About Systematic Model Verification Using Simulink Design Verifier
	When to Use Simulink Design Verifier
	Using Simulink Design Verifier in a Model-Based Design Workflow
	Creating Analysis Result Reports

	Detect Design Errors in Controller Model
	Generate Test Cases for a Simplified Cruise Control Model
	Analyze a Simple Cruise Control Model
	Generate Test Cases for Coverage Analysis

